3.279 \(\int \frac{(1-c^2 x^2)^{3/2}}{a+b \cosh ^{-1}(c x)} \, dx\)

Optimal. Leaf size=239 \[ \frac{\sqrt{1-c x} \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{2 b c \sqrt{c x-1}}-\frac{\sqrt{1-c x} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 b c \sqrt{c x-1}}-\frac{\sqrt{1-c x} \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{2 b c \sqrt{c x-1}}+\frac{\sqrt{1-c x} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 b c \sqrt{c x-1}}-\frac{3 \sqrt{1-c x} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c \sqrt{c x-1}} \]

[Out]

(Sqrt[1 - c*x]*Cosh[(2*a)/b]*CoshIntegral[(2*(a + b*ArcCosh[c*x]))/b])/(2*b*c*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]
*Cosh[(4*a)/b]*CoshIntegral[(4*(a + b*ArcCosh[c*x]))/b])/(8*b*c*Sqrt[-1 + c*x]) - (3*Sqrt[1 - c*x]*Log[a + b*A
rcCosh[c*x]])/(8*b*c*Sqrt[-1 + c*x]) - (Sqrt[1 - c*x]*Sinh[(2*a)/b]*SinhIntegral[(2*(a + b*ArcCosh[c*x]))/b])/
(2*b*c*Sqrt[-1 + c*x]) + (Sqrt[1 - c*x]*Sinh[(4*a)/b]*SinhIntegral[(4*(a + b*ArcCosh[c*x]))/b])/(8*b*c*Sqrt[-1
 + c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.458781, antiderivative size = 304, normalized size of antiderivative = 1.27, number of steps used = 10, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {5713, 5701, 3312, 3303, 3298, 3301} \[ \frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c \sqrt{c x-1} \sqrt{c x+1}}-\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt{c x-1} \sqrt{c x+1}}+\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c \sqrt{c x-1} \sqrt{c x+1}}-\frac{3 \sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c \sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - c^2*x^2)^(3/2)/(a + b*ArcCosh[c*x]),x]

[Out]

(Sqrt[1 - c^2*x^2]*Cosh[(2*a)/b]*CoshIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])
- (Sqrt[1 - c^2*x^2]*Cosh[(4*a)/b]*CoshIntegral[(4*a)/b + 4*ArcCosh[c*x]])/(8*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]
) - (3*Sqrt[1 - c^2*x^2]*Log[a + b*ArcCosh[c*x]])/(8*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (Sqrt[1 - c^2*x^2]*Si
nh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(2*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (Sqrt[1 - c^2*x^2]*
Sinh[(4*a)/b]*SinhIntegral[(4*a)/b + 4*ArcCosh[c*x]])/(8*b*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rule 5701

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Dist[(-(d1*d2))^p/c, Subst[Int[(a + b*x)^n*Sinh[x]^(2*p + 1), x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c
, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && IGtQ[p + 1/2, 0] && (GtQ[d1, 0] && LtQ[d2, 0]
)

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{\left (1-c^2 x^2\right )^{3/2}}{a+b \cosh ^{-1}(c x)} \, dx &=-\frac{\sqrt{1-c^2 x^2} \int \frac{(-1+c x)^{3/2} (1+c x)^{3/2}}{a+b \cosh ^{-1}(c x)} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\sinh ^4(x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \left (\frac{3}{8 (a+b x)}-\frac{\cosh (2 x)}{2 (a+b x)}+\frac{\cosh (4 x)}{8 (a+b x)}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{3 \sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\cosh (4 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\cosh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{3 \sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (\sqrt{1-c^2 x^2} \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{2 c \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{4 a}{b}+4 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{3 \sqrt{1-c^2 x^2} \log \left (a+b \cosh ^{-1}(c x)\right )}{8 b c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{2 b c \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (\frac{4 a}{b}+4 \cosh ^{-1}(c x)\right )}{8 b c \sqrt{-1+c x} \sqrt{1+c x}}\\ \end{align*}

Mathematica [A]  time = 0.441693, size = 147, normalized size = 0.62 \[ -\frac{\sqrt{1-c^2 x^2} \left (-4 \cosh \left (\frac{2 a}{b}\right ) \text{Chi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+\cosh \left (\frac{4 a}{b}\right ) \text{Chi}\left (4 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+4 \sinh \left (\frac{2 a}{b}\right ) \text{Shi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )-\sinh \left (\frac{4 a}{b}\right ) \text{Shi}\left (4 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+3 \log \left (a+b \cosh ^{-1}(c x)\right )\right )}{8 b c \sqrt{\frac{c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 - c^2*x^2)^(3/2)/(a + b*ArcCosh[c*x]),x]

[Out]

-(Sqrt[1 - c^2*x^2]*(-4*Cosh[(2*a)/b]*CoshIntegral[2*(a/b + ArcCosh[c*x])] + Cosh[(4*a)/b]*CoshIntegral[4*(a/b
 + ArcCosh[c*x])] + 3*Log[a + b*ArcCosh[c*x]] + 4*Sinh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])] - Sinh[(4
*a)/b]*SinhIntegral[4*(a/b + ArcCosh[c*x])]))/(8*b*c*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x))

________________________________________________________________________________________

Maple [A]  time = 0.131, size = 409, normalized size = 1.7 \begin{align*} -{\frac{1}{ \left ( 16\,cx+16 \right ) \left ( cx-1 \right ) cb}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,4\,{\rm arccosh} \left (cx\right )+4\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )+4\,a}{b}}}}}-{\frac{1}{ \left ( 16\,cx+16 \right ) \left ( cx-1 \right ) cb}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,-4\,{\rm arccosh} \left (cx\right )-4\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )-4\,a}{b}}}}}-{\frac{3\,\ln \left ( a+b{\rm arccosh} \left (cx\right ) \right ) }{8\,cb}\sqrt{-{c}^{2}{x}^{2}+1}{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}+{\frac{1}{ \left ( 4\,cx+4 \right ) \left ( cx-1 \right ) cb}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,2\,{\rm arccosh} \left (cx\right )+2\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )+2\,a}{b}}}}}+{\frac{1}{ \left ( 4\,cx+4 \right ) \left ( cx-1 \right ) cb}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,-2\,{\rm arccosh} \left (cx\right )-2\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )-2\,a}{b}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*x^2+1)^(3/2)/(a+b*arccosh(c*x)),x)

[Out]

-1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,4*arccosh(c*x)+4*a/b)*exp((b*arccos
h(c*x)+4*a)/b)/(c*x+1)/(c*x-1)/c/b-1/16*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,-
4*arccosh(c*x)-4*a/b)*exp((b*arccosh(c*x)-4*a)/b)/(c*x+1)/(c*x-1)/c/b-3/8*(-c^2*x^2+1)^(1/2)/(c*x-1)^(1/2)/(c*
x+1)^(1/2)/c*ln(a+b*arccosh(c*x))/b+1/4*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,2
*arccosh(c*x)+2*a/b)*exp((b*arccosh(c*x)+2*a)/b)/(c*x+1)/(c*x-1)/c/b+1/4*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c
*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,-2*arccosh(c*x)-2*a/b)*exp((b*arccosh(c*x)-2*a)/b)/(c*x+1)/(c*x-1)/c/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c^{2} x^{2} + 1\right )}^{\frac{3}{2}}}{b \operatorname{arcosh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(3/2)/(a+b*arccosh(c*x)),x, algorithm="maxima")

[Out]

integrate((-c^2*x^2 + 1)^(3/2)/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (-c^{2} x^{2} + 1\right )}^{\frac{3}{2}}}{b \operatorname{arcosh}\left (c x\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(3/2)/(a+b*arccosh(c*x)),x, algorithm="fricas")

[Out]

integral((-c^2*x^2 + 1)^(3/2)/(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac{3}{2}}}{a + b \operatorname{acosh}{\left (c x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*x**2+1)**(3/2)/(a+b*acosh(c*x)),x)

[Out]

Integral((-(c*x - 1)*(c*x + 1))**(3/2)/(a + b*acosh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c^{2} x^{2} + 1\right )}^{\frac{3}{2}}}{b \operatorname{arcosh}\left (c x\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(3/2)/(a+b*arccosh(c*x)),x, algorithm="giac")

[Out]

integrate((-c^2*x^2 + 1)^(3/2)/(b*arccosh(c*x) + a), x)